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CHAPTER 1

Introduction

The increase in the complexity of circuits fabricated on a single semiconductor chip has
made the design and testing of the circuits more difficult. For a number of years, circuits
with only a small number of transistors have been successfully analyzed using circuit
simulators such as SPICE2[1]. However, as the size of the circuit grows, the exscution time
and memory requirements of these simulators become prohibitive. These problems have led
to the development of new simulators that are much faster and less memory intensive than

SPICE-type simulators such as MOTIS{2], MOTIS-C[3], and MOSTAP[4].

The new simulators developed for analyzing LSI and VLSI circuits often restrict the type °

of circuits that they can deal with. This knowledge is then utilized in a variety of ways to
quickly produce relatively accurate time domain waveforms for the circuits. For digital
circuits, this means that the process of design verification can be carried out on a level

between that of conventional circuit analysis and conventional logic simulation.

One of the most common techniques used in large scale circuit simulators is the
decomposition of the circuit into smaller subcircuits. Each subcircuit is then analyzed
individually and the results are combined to give the desired data. In the general case, this is
known as “tearing” and corresponds to partitioning the network equations in particular
way(5]. I the subcircuits can be considered unidirectional (as is often the case for MOS
circuits), then further gains in speed can be achieved by analysis sequencing and latency
checking(6].

A second approach can be considered as temporal decomposition of the circuit. In this

method, known as waveform relaxation, the solution for an entire time interval is

approximated using only a limited number of iterations at any point within the interval. This
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sweep of the whole interval can then be repeated unti] the solutions converge{7]. However, -
if it can be justified that the first sweep is accurate enough, it is possible to discard the a )
following sweeps as well as the overhead associated with fully implementing waveform ::_L'_ ]
relaxation. _ i

In timing simulators such as MOTIS-C, and SPLICE(8], a Gauss-Seidel-like technique is
used to decouple ﬁe network equations and a single sweep of the relaxation technique is ]
taken. This approach of not iterating to convergence means that the classical numerical .
properties of an algorithm such as stability and convergence may not hold. Hence, new
studies of these propertics become necessary to provide a basis for the use of an

algorithm(9].

§ e

Wei proved in Reference [10] that the standard Gauss-Seide! method is not convergent
when floating capacitors exist in the circuit. This helped motivate the development of a e
modified Gauss-Seidel method which used a forward predictor to estimate the values of
unsolved variables in feedback loops. The predictor Gauss-Seidel method, shown to be zero
stable and convergent, was implemented in a program called PREMOS designed for
simulating NMOS circuits.

ndhndh

The work described in this thesis covers two basic areas. The first is a further study of the
numerical properties of the standard Gauss-Seide] and the predictor Gauss-Seidel methods.
A modification to the predictor method is made that gives it certain properties of both
methods. The second area is concerned with adding the capability of analyzing some CMOS

circuits to the PREMOS program.

Chapter 2 is a short description of some basic techniques used in numerical circuit
analysis. The properties of the Gauss-Seidel, predictor Gauss-Seidel, and modified predictor
Gauss-Seidel are studied in Chapter 3, while Chapter 4 describes the CMOS circuits that have
been implemented in PREMOS. Finally Chapter § presents some conclusions and comments.




CHAPTER 2
Circuit Simulation Techniques

2.1 Istroduction

Conventional circuit simulators have proven to be very successful at providing accurate
current and voltage waveforms fox small scale integrated circuits. However, in LSI and VLSI
design, these exact waveforms are often not needed as much as just the timing of the
transitions from one logic state to another. This led to the development of logic simulators(8]
that give results in terms of discrete levels. These logic simulators are much faster than
circuit simulators, but the loss of information is not always acceptable. In an attempt to
bridge this gap between the accuracy of circuit simulators and the speed of logic simulators,
timing simulators are being developed with the goal of providing waveforms close to those of

circuit simulators at speeds approaching those of logic simulators.

Most timing simulators can be broken into two categories: those based on conventional
circuit analysis that employ various techniques to increase the speed, and those based on logic
simulation but employ various techniques to increase the accuracy. This report is concerned
with techniques more closely related to circuit analysis than to logic simulation. In this
respect, some of the existing circuit analysis techniques are reviewed in this chapter.

2.2 Conventional Circuit Apalysis
A nonlinear dynamic circuit may in general be characterized by the equation,
f(x,xt) =0, x(0)=1x, 2.1)

where x represents a vector of voltages and/or currents and t represeats time. In order to

obtain a numerical solution to x, Equation (2.1) is discretized at each time point t, by using
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an integration formula such as the backward Euler, trapezoidal, or one of Gear's formulas.
This discretization transforms Equation (2.1) at each time point to an algebraic equation of

the form,

8x) =0 2.2)

Equation (2.2) is then usually solved by a modified Newton's method which repetitively

develops and solves linear equations of the form,
Ax=Db 2.3

where A is a matrix and b is a vector. At every iteration A and b must be constructed by
linearizing the nonlinear equation at a new iteration point found during the previous
iteration. This process is repeated until the sequence of x converges to within some specified
tolerance. Once the solution for x, at a this point is found, the time is incremented and the

process is started again until the final time is reached. The basic algorithm can be given as

BEGIN
BEGIN
X = [Voltages, Curreats]
TIME = Start Time
H = Initial Time step
END (initialization}
TIME = TIME + H
WHILE (TIME < End Time) DO
BEGIN
Discretize the differential operators by
using an integration formula.
REPEAT
BEGINk = 1
Evaluate linear models for circuit elements at
the operating points and form the circuit
matrix A and vector b.
Solve linear equations AX = b.
END




UNTIL (convergence achieved) {dc loop}
IF the local truncation error (LTE) is
smaller than the tolerance
THEN
BEGIN
Compute new time step H
TOME = TIME + H
END
ELSE
BEGIN
TIME = TIME - H
Compute revised time step H
TIME = TIME + H
END
END ({time loop}
END

An increase in speed can be achieved by using sparse matrix techniques. However, these
techniques are not cost effective for VLSI simulations; as a result, new approaches have
recently been proposed. The basis for several of these new methods will be described in the

next sections.

3.3 Large Seale Circult Analysis

A number of techniques based on relaxation methods have been proposed for solving
large systems of simultaneous equations. When these techniques are applied to circuits, a
priori knowledge of some of the properties of the circuits can be used to significantly
decrease the amount of computation required while at the same time maintaining accuracy.

However, it is important to first understand the basic methods.

2.4 Point Gauss-Jacobd! Algorithm

If the vector x in Equation (2.2) satisfies x « R™ and xJ is the value of the kth component

of the vector x at time t,, the value of x!*! is found by solving the scalar equation,

g(xP.xP, . . . XX, XPh . . . L,XR) (2.9)

The complete vector x**! is found by incrementing k from 1 to m.
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While this algorithm is fairly easy to implement, it may coaverge to the solution very -

slowly, provided that it converges at all. A natural extension of this algorithm leads to the

next algorithm.

2.5 Point Gauss-Seide! Algorithm -
In this algorithm, information from the present iteration is used as well as information
from the previous iteration which usually decreases the number of iterations necessary for

convergence. When computing component x2*!, the equation to be solved is
S(XF”» xf‘”v < ’x::llt Xy Xf+1, e x,‘,‘,) (2.5)

This algorithm can result in a considerable increase in speed, especially when the circuit

variables are evaluated in the same order as the signal flow through the circuit.

2.6 Block Algorithms . .

If each x, represents a node voltage, then from the network point of view, the two
methods above are equivalent to decomposing the network at every node. Another
possibility is to decompose the circuit into subcircuits composed of several nodes. When the
Gauss-Jacobi or Gauss-Seide] methods are applied in conjunction with decomposition into
_ subcircuits, Equations (2.4) and (2.5) can still be used, but with each x, representing a vector
? instead of a scalar. In this case each vector x, can be solved using the conventional circuit

analysis previously described.

2.7 Waveform Relcxation

For all of the algorithms described so far, the analysis is carried out at each time point for
the entire circuit before proceeding to the next time point. However, it is also possible to

solve for the waveform of each subcircuit over the entire time interval before proceeding to

the next subcircuit. After finding the waveforms for all of the subcircuits, the process can be

repeated until the waveforms converge to a solution[7).

g T
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One of the advantages of waveform relaxation is that different step sizes can be used for
different subcircuits. However, a large amount of memory may be required to store the

waveforms and a large number of iterations may be needed for the solution to converge.
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CHAPTER 3

Numerical Properties

3.1 Introdaction

The techniques of the previous chapter can all require a considerable amount of time to
check to see if the computed solution is accurate enough. At each time point the algorithm
will have to check for convergence and then decide whether another iteration is needed.

Then after convergence for that time point is achieved, the local truncation error (LTE) must =

- be computed so that a decision can be made as to the accuracy of the point in question. If
the LTE is too large, the point may be thrown out and a new, smaller step must be taken
ﬁ before repeating the process. Even if the point is accepted, the next step size is usually
recomputed before proceeding. The end result is that a lot of overhead computation not
directly related to the desired solution is performed. Ce

This has led to the development of some simulators that used a fixed number of iterations :—
at each time point as well as a fixed step size. In fact some of these simulators such as
MOTIS, use only a single iteration. While this approach can obviously save a lot of

computation time on a per sweep basis, the fact that MOTIS only takes one sweep means that -

the relaxation is not carried to convergence and classical numerical properties such as stability
) and accuracy may not hold. Therefore, these properties must be evaluated to provide a
é proper basis for the use of this method.

% 3.2 Stebility

# In general, the analysis of a particular method is studied on a test problem simple enough -

3 to be analyzed theoretically, yet complex enough to provide information about a wide variety
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of applications. The most common test problem used is probably the single time invariant
linear differential equation:

X = ax, x(0) = x, (3.1)
where "x” and "a" are scalars. Using a single equation bas worked well when an integration
method like the backward Euler, trapezoidal, or one of Gear's formulas has been carried to
convergence at each step. However when a Gauss-Seidel type technique is used and the
process is not iterated to convergence at each step, the values of the variables behave
differently according to the order in which they are processed. Consequently, the test
problem must be generalized to become a system of equations,

Ci=Gx, x(0) = x, 3.2)
where x is a vector, C and G are matrices, and C is invertible. When an integration
algorithm is applied to Equation (3.2) it is possible to express the value of x at t .,

recursively in the form,

X,., = M() z, (3.3)

where h is the step size and M(h) is known as the ccmpanion matrix. In terms of the initial

conditions, Equation (3.3) becomes
I,.; = MM®)*! 1, (.4

The numerical properties of one step integration algorithms are then defined in terms of the

properties of the companion matrix.

Definition 3.1[10]

An integration algorithm is consistent if when applied to Equation (3.2), its companion

matrix can be expanded in a power series as a function of the step size h as
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M() = I + hA + 0(h?) 3.5 .

where A equal C-!G.

~
Theorem 3.1
For a given step size h®, the sequence of vectors {x,} in Equation (3.4) is bounded if and _
only if the spectrum (or set of eigenvalues) of M(h*) is contained in the unit ball B(0,1) and
no multiple zero of the minimal polynomial has modulus equal to one[11). (The requirement
that no multiple zero of the minimal polynomial has modulus equal to one is the same as =
saying that all the eigenvalues with a magnitude of one must be distinct.) )
The above theorem leads to the following definition of stability for an integration
algorithm: 'f'
An integration algorithm is zero stable if and only if there exists a 8 > 0 such that for all =
. b in the interval (0, 3), the spectrum of M(h) is contained in the unit ball B(0,1), and no
: multiple zero of the minimal polynomial has modulus equal to cne. <

Note that if a circuit being evaluated is stable, then the solution is bounded, and the

integration algorithm must also be stable if an accurate solution is desired.

¥

Definition 3.3

Let x(t) be the exact solution of the test problem. An integration algorithm is convergent
if the sequence of the computed solution converges uniformly to x(t) as the step size tends to

Zer0.
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Theorem 3.2

If an integration algorithm is consistent and zero stable, then it is convergent.
The proof of Theorem 3.2 can be found in numerical books such as Reference [12].

It has been proven in Reference [10] that the Gauss-Seidel method is convergent if there
are no floating capacitors (i.e., capacitors connected between two nonground nodes) present
in the circuit. However, it has also been proven in Reference [10] that the Gauss-Seidel
method is not consistent, and therefore may not be convergent, whenever floating capacitors
are present. This led Wei to introduce a modified Gauss-Seidel method which is convergent
even when floating capacitors are present in the circuit. However, from the definition,
convergence is dependent upon the step size tending to zero. In practice it is desirable to
make the step size as large as possible for the desired degree of accuracy. Therefore, the
range of h for which a method is stable is important, which is a different issue than
convergence, and thus has to be studied separately. Another issue of importance is that the
presence of complex conjugates in the spectrum of M(h) may indicate an oscillatory
component in the computed solution that may not be present in the exact solution. These
issues will be examined now by using a simple test circuit shown in Figure 3.1 to generate a

system of equations and the corresponding companion matrices.

3.3 e Companion Matrices

Applying nodal analysis to the circuit of Figure 3.1, we obtain the matrix equation:

e[ E3 vc-§ 21 LS

Letting

..................
........................
L A N R N P i S S PR R R e A S P TS

Y
.

Sk A oA B

TP SEAEATORORICIIN DRI

- ..' f 1"' ". "’ .l. .I. .U. .‘. 1

r &
of
P

.
a

=




PAac e S

CHS RNt I

~

i’

e T TV TSR W AT T

12

NN 1534

e

Lt anas out s 0 aoioasasieae ae s Mgl oae

1°¢ andyy

6

W
(" ]
g

T e
DT
St a8 o> P o

LR N
Ve T
-

A

oo,

..

A
"

.

s
1 4
>
<
.
.
.
.

!

«
'y

[

P A
YGR




P s Ty NI g T T o "T_T
A
13 A

. =& + ¢ 3.7

=4 +§& (3.8)

=& (3.9)
~ J
hh=&*+h (3.10) f:_:
- .
- 82" 8 — By (3.11) "
E
Bzt = Ba— By (3.12) p
Ba=8*8 (3.13) -
e _ ]
i 4
- e s ;
C 2, o (3.14) :
3
. G rBu luw 4
- - 821 Baz] (3.15) R
f X
v, .
Va v, (3.16) :
- Equation (3.6) can be written in the form of Equation (3.2) as: -
‘ V=-C1GV (3.172) 1
=AV (3.17v) _g
_ If the backward Euler integration formula .
k= (= x5, )h (3.18) ;
3

¢ is applied to Equation (3.6) we have
Via T V-1
G =6 h Bu Buz]| [Vie
[-C, c!] Ve = V!,l-l + [Sn ‘32] [Vl.l (3.198)

h
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& =G| Vi hg,, hg Vie Via-1] o
[—lcs ‘1] [v;,]+ [x;; z:;] [v:.] [-c, e] [V;..-:] 0 (.1%)

c,+hg,, —c,+hg
o oJ R ][RR

At this point the derivation for the companion matrices of a full matrix solution, the

standard Gauss-Seide]! and the predictor Gauss-Seidel methods differ. For a full matrix

solution this becomes
v c,+hg,, —cy+hg, |} - v
IR e e I e ] I
k,, k
k.:: k?,] [Vz].-; , (3.20p)
where
k), = ¢, (c;+hg;,) ~ ¢5(cy—hgy,) (3.21)
kyy = —¢y(c;+hg;;) + ¢(c,—hg,;) (3.22)
k;; = ¢,(c;=bg;;) ~ c;(c;+hg;,) (3.23)
ky; = —c,(cy—hgy,) + (¢, +bg,,) (3.24)
4, = (c;+hgy,)(c;+hgy;) = (—cy+hgy,)(—cy+hg,,) (3.25)

3.3.1 Standard Gauss-Seidel

When applying the standard Gauss-Seidel technique, Equation (3.19) becomes

e 11 ) [ s Y [

c: bg,,
= ¢, ¢, ] [v,]._‘ (3.26b)

A
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Solving for V, ,and V, ,,
il o1 oy my| v
HEr ==l o2
where
m,, = ¢,(c;+hg,,) (3.28)
m,;, = —hg;,(c;+hg;,) (3.29)
m,, = ¢,(¢y~hg,,)~c;(c,+hgy,) (3.30)
m,;; = —cy(c;—bg,,) + (e, +bg,,) (3.31)
A, = —cy(cy—hg,,) + c;(c,+bg,,) (3.32)
The spectrum of Mg¢(h) can then be found as the roots of the equation,
A} = ((my, + mu VAN + ((my;m,,)VA2) = 0 (3.33)

3.3.2 Predictor Gauss-Seidel

In Reference [10] Wei introduced a modified Gauss-Seide] method which used a forward
predictor for unsolved node voltages. The voltages were predicted according to the formula,

v--l - v--!
= . } (3.34)

Viigoem = VN1 + b, {—"_
h,_,

For a more general formula which generates a family of equations and includes the
original predictor method as a special case, the following predictor equation is proposed

v--l - v--2
] L ] (3.35)

] =1 h‘

——T—A
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This family of equations obviously reduces to Equation (3.34) when gamma equals zero, -
but approaches the standard Gauss-Seide]l method as gamma goes to infinity. Letting
9= —1 (3.36)
1++h :
applying Equation (3.35) to Equation (3.19), end assuming thath, = h__, = h, we obtain
¢,+hg,; 0 Vil o |6 —hgi + 8(c;=hgyu) | v, (3.37) ;
—&+hgy, Gthgn| (Vif, [© G Vajos ) -
+ [0 -O(c;-hsu)] \2
0 0 Val,es .
or
¢;+hg, 0 01 [ via €, ~hgy,+8(c;~bgy,) —6(c;~bg,,) "1.--1]
=Cy+hgy G +hgp 0| | vy, | = |~c, & 0 |]v20-1] (3.38) =
0 0 . 1] tY2.e-1 0 1 0 Vz‘_zj -
The predictor companion matrix, M,q(h) is found as
-1 .
¢;+bg, 0 0 ¢, —hg,+6(c;—bgy;) —0(c,~hg,,) -
—¢y+hg;; ¢ +hg; 0 -Cy G 0 (3.39)
0 0 1 0 1 0
P QR -
=S TU
010
where <
e e e e e T e e T T T e T I e i R NS
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: : P= Cxlpl (3.40)

oo Q = (~bgy, + 8(c;=bg,,)VB, (3.41)

N . R = (- 0(c-bg))V/B, (3.42)

' S = c,(c;—hg,,)/(B,B,) — cyB, (3.43)

} - T = (c;—bg;,)(~hg;s + 0(c,~hg,;))/(B,B,) + /B, (3.44)

U = (—0(c;—hg;,)(cs—~bg,,)V(B,8,) (3.45)

B, = (c;+hg,,) (3.45)

B; = (c;+hg;,) (3.47)

The spectrum of M,q4(h) is then found as the roots to the cubic equation,
A= P+ + (PT-SQ-U)\ + (PU-SR) = 0 (3.48)

Given a cubic equation, an explicit solution in terms of the coefficients is found as

follows[13]. A cubic equation of the form

y+py+qy+r=0

may be reduced to the form
P+ax+b=0
by substituting (x - p/3) for y. When this is done, then

s = (3 - p})3

and

b= (2p° - 9pq + 271)27

For solution let
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‘@ UL s

A=V (—b2) + V(e + a27) -

and : -

-
el
1

I B="V (-b2) - V(b¥/a + 22737)

Finally, the values of x will be givea by

x = A+B, —(A+B)2 + ((A-By2) V=3, - (A+B)2 - ((a-By2) V-3

When the above formulas are applied to Equation (3.48) the expressions obtained are
complicated enough that the various numerical properties of the method are probably
masked. Instead, the numerical properties of the methods when applied to the test circuit of
Figure 3.1 with different parameter values are investigated.

3.4 Stability and Accuracy Studies

In this section several studies of the circuit given in Figure 3.1 will be presented. The
component values in each case are selected so that the circuit is stable with strictly real

eigenvalues and then the spectrum of each companion matrix as a function of the step size is
% plotted. Each plot will have a solid ellipse representing the upper half of the unit circle and a
'? series of discrete points that give the spectrum at specific values of h. The values of the
components will not be realistic for practical circuits, but by proper scaling these results

should be applicable to a wide variety of cases. It can be seen from Equation (3.19) that if

each capacitance and the step size h are multiplied by the same factor a,, then the results -

should remain unchanged. Similarly, if each conductance is multiplied by a factor a,, and the




POt i Bade S BRACAM A IR G AN Bie i M RN T N A e A S L B DA h AL AL S A0 aas sivd e oen SN AdU s

19

step size is divided by a, then once again the results should be the same. In summary, if the

system
Ci+Gzx=0 (3.49)
results in the companion matrix M(h), then the system

a,Ct+a,Gx=0 (3.50)
will give the companion matrix M(%— h).
2

The accuracy studies will be conducted by exciting node 1 of the circuit with a current
source of 1.0 amp for all time t > 0.0 (with 0.0 amps as the input prior to t = 0.0). This
step input will allow the response of the methods to a rapidly changing input to be compared
by observing the voitage computed for node 2. ‘

3.4.1 Study A

By letting ¢, = & = &, = 1 (farad) and g, =g, =g,= g, =g, =1 (mho) this study provides a
reference to which other studies can easily be compared. For this circuit with eigenvalues
-2/3 and -2, Figure 3.2 shows that both the standard and predictor Gauss-Seide! methods are
stable for 0 < h < =. The standard method, shown in Figure 3.2a, is strictly real for all h.
The spectrum of the pure predictor method, (i.e., gamma = 0.0 in Equation 3.36) shown in
Figure 3.2b has complex components for h greater than one-third and reaching a maximum at
about h = 1. Finally, the modified predictor spectrum is shown in Figure 3.2c with
gamma = 1.0. As expected, this spectrum appears to be a weighted average of the previous

two.

Figures 3.3 and 3.4 are plots of the voltage at node 2 for h = 1.0 and b = 0.1
respectively. Comparing the standard and predictor Gauss-Seide! (gamma = 0.0) methods

with the solution generated by a full matrix approach, we see in this case that all three
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methods have comparable accuracy for a given step size. Comparing the solutions generated
by the two different step sizes, the larger step size does not allow the voltage to change as
quickly as the smaller step size. Sharp comners and the lagging response in Figure 3.3
indicate that a step size (b = 1.0) of the same order of magnitude as the eigenvalues (-2/3

and -2) may result in an inaccurate solution when there is a rapidly changing input.
3.4.2 Study B

In this example, ¢, is reduced by a factor of ten. This has the effect of decreasing the
stiffness of the circuit (i.e., ratio of the eigenvalues) and allows the spectrum of the standard
method, Figure 3.5a and that of the predictor method (gamma = 0.0), Figure 3.5b, to be
strictly real and thlun the unit circle. This indicates neither method should have any

problems with instability or unwanted oscillations for any value of h.

3.4.3 StudyC

By increasing the feedback capacitance &, to 100, a very stiff system results. Four
different spectra are plotted in Figure 3.6. While both methods (Figures 3.6a and 3.6b) still
remain stable for all h, the pure predictor method (gamma = 0.0) has a complex spectrum
for h > 2.8. Increasing gamma to 1.5 complete]y removes the complex components of the
predictor method (Figure 3.6c). The magnitude of the complex component reaches a
maximum at h = 25.0 and in this case it is seen in Figure 3.7 that the pure predictor method
(i.e., gamma = 0.0) has an oscillatory component in the solution that is not present using the
other methods. As expected, increasing gamma to 1.5 will remove these oscillations.
However, it was found experimentally that a gamma as small as 0.05 was enough to remove
the oscillations and allowed a more accurate solution (Figure 3.8). The root locus plot for
gamma = 0.05 (Figure 3.6d) shows that in this case the maximum magnitude of the complex
part of the roots (now shifted to h = 12.5) was reduced by approximately 40 percent, from

0.5 t0 0.3.
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Since the eigcn&'a]ues‘ of the test circuit are strictly real (-0.1 and -2.0), the exact solution
will not have any oscillatory components. Therefore, any oscillations in a computed solution
are due to the numerical technique and not the physical circuit. By carefully choosing the
step size, unwanted numerically generated oscillations can be observed. However, it should
be noted that the step size necessary was much larger than either of the eigenvalues, and
study A has already demonstrated that a step size smaller than the eigenvalues can be
desirable for accuracy when an input to the circuit changes rapidly. This study also clearly
shows that the existence of complex roots in the spectrum of the companion matrix is not
enough to indicate oscillations are present in the computed solution. Since, in general, a step
size Jarger than any of the eigenvalues may not generate an accurate solution in response to a
rapidly changing input, this indicates that these unwanted oscillations are probably not a

major factor in generating accurate solutions.
3.4.4 Study D

In this case, with a very large feedback term represented by g, = 100, we find that both
the standard Gauss-Seidel (Figure 3.9a) and the predictor Gauss-Seidel (gamma = 0.0)
(Figure 3.9b) methods become unstable for b within a finite interval. For this very stff
system with eigenvalues of -0.037 and -35.629, the solution would normally be obtained by
starting with a very small step size to catch initial transients and then increasing the step size
30 that the rest of the interval would not require too much computation time. However, the
standard method is unstable for 1 < h < 16 while the pure predictor method is unstable for
1 < h < 81. If an automatic time step control scheme increased the step size too much (i.e.,

h > 1.0), then neither method would be satisfactory.

For completeness, the spectrum of the predictor method with gamma = 2.0 is included as
Figure 3.9c to demonstrate that the modified predictor method has properties in between
those of the standard and the pure predictor methods.
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3.4.5 StudvyE '

o P e Ty
i : . .
e T

This case demonstrates properties of the methods when a very large transconductance is
present. A simple exchange of the values for g, and g yields a circuit with exactly the same
eigenvalues as in study D. While the predictor method with gamma = 0.0 (Figure 3.10a)
still has a finite interval where it is unstable, the standard Gauss-Seide] method
(Figure 3.10b) is stable for all positive h. Comparing the C and G matrices for this test and __

i.':
’ ‘l
b}'.
v
be
F

for the previous test, we find that the only real difference is that the one element has moved
to form a lower triangular instead of an upper triangular G matrix. To make the modified
predictor method stable for all h, gamma is set to 5.0, as in Figure 3.10z. =

S An accuracy test with h = 81 (Figure 3.11) shows that the pure predictor method can
oscillate around the full matrix solution when the step size is much larger than any of the
:'-% cigenvalues. In order to use the predictor method with step size h = 1.0, gamma must be
F nonzero. If gamma = 5.0 as in the spectrum plot of Figure 3.10c, the accuracy plot of
Figure 3.12 results. In this case (h = 1.0), neither the standard or the predictor Gauss-Seidel
i (gamma = 5.0) methods are very close to the full matrix approach. If the step size is -
reduced to 0.1, as in Figure 3.13, the predictor method comes much closer to ths full matrix

* solution, while the standard Gauss-Seide] method continues to differ greatly. If, in addition

to reducing the step size to 0.1, gamma is reduced from 5.0 to 0.0, then the pure predictor
method is found to follow the full matrix solution almost exactly (Figure 3.14).

3.4.6 Srudies F and G

"y

Both of these cases lack the feedback capacitor, &, and bave the same conductance
matrix, G. The only difference is an interchange of the input and output capacitances,
¢, and ¢&,. This results in both circuits having identical eigenvalues and the major difference
being a scale factor for each row of the A matrix. A comparison of the spectrum plots for
study F (Figure 3.15) and for study G (Figure 3.16) shows that the results are identical when

.............
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a specific method is compared to the same method. One interesting result of these studies is
that even though both the capacitance and conductance matrices are diagonally dominant
(i.e., for each row, the sum of the off-diagonal elements is less than the absolute value of the -
diagonal element [14]), the predictor Gauss-Seidel method is unstable for all h > 64.0, while
the standard Gauss-Seidel method is stable for all h. An accuracy plot (Figure 3.17) shows

that for h comparable to the eigenvalues, both the standard and predictor Gauss-Seids! o

methods have accuracy very close to that of a full matrix solution.

The studies conducted so far have been chosen to illustrate behavior with respect to
é specific component values in the test circuit. The next three studies are included to allow

o
further comparison based upon the structure of the capacitance and conductance matrices. T
i

3.4.7 Studies H, J, and K -

Study H demonstrates behavior when all the clements in both the capacitance and
conductance matrices are nonzero. As in study F, both the C and G matrices are diagonally

dominant. A wider range of h for which the spectra are complex is observed in

R

Figures 3.18a and 3.18b. The predictor method still is unstable for large enough h, while the
standard method is stable for all h.

Study I has the same C and G matrices as study H, except that the upper hand element of “
the conductance matrix has been set to zero. This creates a lower triangular, diagonally |
dominant G matrix. In this example, Figures 3.19a and 3.19b show that both methods are
stable for all h.

Study K again has the same C and G matrices as study H, except that this time the lower
lefthand element has been set to zero. This yields an upper triangular conductance matrix.
As in study J, both the standard and predictor Gauss-Seide! (gamma = 0.0) methods are -
stable for all h. (Figure 3.20.)
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3.5 Discussion

The results of each of these ten studies are summarized in Figure 3.21. Included for each
study are the capacitance (C), conductance (G), and A = (—C~!G) matrices, along with the
eigenvalues of the test circuit. In the following discussion, the term “standard method”
means “standard Gauss-Seidel method” and the term "predictor method” means “predictor
Gauss-Seide! method.”

A comparison of studies A, B, and C shows that the differences result from the difference
in the capacitance matrix. By referring to Equation (3.6), it can be seen that the C matrix
will always be symmetric (i.c., C = CT)[14] and will be diagonally dominant as long as
¢, and ¢; are both nonzero. This indicates that if the G matrix is strictly diagonal, both the
standard and predictor methods will be stable for all h. If the feedback capacitance, &,, is
very large in comparison to the other two capacitance then some undesirable oscillation can
occur, but stability is maintained.

The next two studies, D and E, are the only two studies with conductance matrices that
are not diagonally dominant. They are also the only two studies with a finite range of h
where the predictor method is unstable. In every other study, if the predictor method is
stable for some h,_, then the method is stable for all h < h_. This stability property is also
true for the standard method in study D. (The standard method is stable for all h in all
studies except D.) Since the interval of h for which the methods are unstable includes a
region between the value of the eigenvalues, it is likely that a fast and accurate solution
would be difficult to actieve for study D with either method. (This is because a step size too
large would either be in the unstable region or could cause large inaccuracies. But a small
step size slows the speed of analysis.)
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Study E, where the G matrix is lower diagonal, results in the standard method being
stable for all h, while the predictor method is still unstable for a finite range of h that lies
between the value of the eigenvalues. This is an example where the standard method seems
more desirable because of the stability properties. However, the accuracy plots show that for
h where the predictor method is stable, the predictor method can also be much more
accurate. When possible, Figure 3.14 indicates that the most desirable technique would be to
use the predictor method where it is stable with gamma equal to zero. If this step size is too
small for the desired speed of analysis, then the smallest gamma possible that insures stability

would be needed for greatest accuracy.

The last five studies ail have a similar diagonally dominant conductance matrix. The first
two of these five, studies F and G, have a strictly diagonal capacitance matrix which result in
each row of the A matrix being scaled, with ro effect on the stability. The last two, studies J
and K, have one clement in the conductance matrix zeroed so that the conductance matrix

becomes triangular. This seems to increase the range of h for which the methods are stable.

However, making an off-diagonal element zero should allow the matrices to behave more
like diagonal matrices, and the first three studies, A, B, and C, have already demonstrated
the behavior of a strictly diagonally G matrix.

In summary, both methods had either stability or accuracy problems if the conductance
r atrix was not diagonally dominant. In these studies, if the conductance matrix is diagonally
dominant, then the standard Gauss-Seidel method is stable for all h, but a dominant
conductance matrix is not sufficient to ensure that the predictor Gauss-Seidel method is stable

for all h. In each case, however, if the method is stable for some h_, then it is also stable for
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all h < h,. Therefore, a proper choice of gamma should be possible to make the predictor

method as stable as the standard method but with increased accuracy for the same step size.
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CHAPTER 4

PREMOS

4.1 Introduction

PREMOS (PREdiction Based simulator for MOS circuits) is an experime.ntal circuit
analysis program that is an attempt to bridge the gap between conveational circuit simulation
and conventional logic simulation. PREMOS was developed by Wei at the University of
Dlinois and it evolved directly from MOTIS-C; but a number of basic changes were
implemented in an attempt to increase the speed and accuracy. In addition to the predictor
method described in the previous chapter, other changes include new data structures so that
new analysis algorithms, such as analysis sequencing, could be implemented.

The subcircuit models built into the program are a major factor why PREMOS is faster
than conventional circuit simulators such as SPICE2. However, if a circuit cannot be
comtrucfed from the built-in models, then PREMOS cannot be used for simulations. Thus, a
user-specified subcircuit description, as well as an automatic partitioning algorithm, are
needed to make the program more useful. Originally PREMOS was restricted to NMOS
circuit simulations, but as part of the work reported in this thesis, several new subcircuits
have been added to allow a limited CMOS circuit capability. These new subcircuits as well as

how to use PREMOS are described in the following sections.

4.2 Iaput Cireuit Description

The program PREMOS supplies the user with a variety of subcircuit models, henceforth
referred to as primitives, that consist of a specific interconnection of tramsistors. The
parameters (such as width to length ratio of the transistors and node capacitances) for each
type of subcircuit are specified using the "model” card. The model card is also used to give a

------------------------
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name to each type of subcircuit, so that each primitive can be used repeatedly with a different
set of parameters each time. The general format of the mode! card is

MODEL (modname) (primitive)(parameters)

After each necessary type of subcircuit has been described and named, the interconnection
of the subcircuits is specified. In this section of the input the user gives each subcircuit a
distinct name, specifies to which nodes the subcircuit is connected, and gives the model name

specifying the proper type of subcircuit. The general format of the interconnect card is
(name) (nodes) (modtm;xe)

with one exception. This exception is when a subcircuit uses the SOURC primitive.

4.2.] The SOURC Primitive

The SOURC primitive is unique because it is used to describe voltage sources that switch
between two levels, such as clock pulses, rather than an interconnection of transistors. The
pulses are specified by a series of "1's” and "0’s” following the model name on the
interconnect card to indicate when the source is at the high or low voltage level, respectively.
Linear interpolation is used to determine the voltage level during the rise and fall times when
switching between levels. An example of this switching bebavior is given in Figure 4.1. As
long as t,, + t,,, is the same as t,, , + t,,, (specified with the MODEL card), then the user
should have no trouble as two consecutive digits will always have the same tota! duration.

However, if the above condition does not hold, then care should be taken.

4.2.2 The CMOS Cells

Four sew CMOS primitives have been added to PREMOS. These are an inverter
(Figure 4.2), a 2-input NAND (Figure 4.3), a 2-input NOR (Figure 4.4), and a variable

number of transfer gates in series (Figure 4.5). The notation that follows is
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R n
- win = width-to-length ratio of the n-channe] transistors h
wlp = width-to-length ratio of the p-channe] transistors :

; cg = gate (input) node capacitance -3
| ¢ = internal node capacitance ° ‘
- ¢l = load (output) node capacitance _
:

and, additionally, for the transfer gates J‘

i \ cs = source (input) node capacitance _‘4
cgn = gate of n-channel transistor capacitance j

cgp = gate of p-channel transistor capacitance

R |
A A

ct = intertransfer gate transistor capacitance

L nt = pumber of transfer gates )
;
- The parameters for the primitives are then specified in the following order: ]
CMINV win wip cg cl )
CMNOR win wip cg ci cl b
CMNAN win wipcgcicl :
CMTFR wiha wipas cgncgpetclat 3
To specify circuit connections, the user must assign node numbers for each of these cells
¢ in the order: i
CMINV ngnl )
CMNOR nln2ninl ]
. CMNAN nl n2 gi al ,
{ CMTFR ns nnl npl nil on2 np2 . . . al I
| 5
l " The {irst-time user should note that even internal node numbers for each cell must be i
specified even though internal nodes should never be connected to another cell.
'

|
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To allow greater flexibility, the CMOS transfer gates have not been specifically linked to
other type of logic as was done by Wei for NMOS transfer gates. However, large
inaccuracies may result if the signal flew within the circuit is from the output node to the

source node of a series of transfer gates instead of from the source to the output. Therefore,

PUTRFSFNELNCTE SR

the user is encouraged to connect the output node of transfer gates only to the input node of
other cells. It should also be noted that proper operation of CMOS transfer gates requires - i
complementary control signals to the n-channel and p-channel transistors. Therefore, the use
may need to add an inverter so that both polarities of the signal are available.

4.3 Control Commands !

The control commands are input into PREMOS in the same file as the input data

description. The nine basic commands are described in Appendix 3 of Reference [10]. The -

only changes have to do with the additiona] CMOS subcircuits and the modification to the
predictor Gauss-Seide] method. B

The OPT card is used to specify the number iterations allowed for each primitive for any
single point in time. The number of dc iterations for the CMOS primitives can either be
concatenated to the string given in Reference [10], or if a zero is input as the first number,
then the CMOS dc iterations can be inputted directly. That is,

OPT itnan itnor ittrs itpul itlch itao itoa itmos itcin itcor itcan itctrs

or,

| S

OPT 0 itcin itcor itcan itctrs
where itcin, itcor, itcan, and itctrs are the number of preset dc iteration for a CMOS inverter,

| a CMOS NOR gate, a CMOS NAND gate, and a CMOS transfer gate respectively and all v

other terms are as defined by Wei. The default number of iteration for any primitive not -

specified is one.

e
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The CONTL card has simply added one more parameter, gamma, so that the modified
predictor method can be used. If the predictor scheme is chosen then gamma may be
specified. The default value of gamma is zero. The form of the CONTL card is now:

CONTL laten ltstp Ipred gamma
with laten, hstp, and Ipred as defined by Wei.
4.4 Trangistor Description

In addition to the input circuit description and control file already described, PREMOS
t requires a second data fils describing the transistor characteristics. The modeling equations
used are [15] and [16]:

1+0(Vgs—Vy)

Ipg =KP+* . [(Vas = Vi) Vpg = %v?n] (4.1

for operation in the linear region and

k 14+A\Vp, P
Ins 2 ° T+0(Vog—Vy) * (Vos = Vi)

4.2)

for operation in the saturation region with

Ve = Vg + AV, (4.3)

and
KP = intrinsic transconductance
A = channe] length modulation parameter
7 = mobility reduction parameter
V3o = threshold voltage at dc bias
AV, = threshold voltage change due to substrate bias voltage change
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These parameters for each type of transistor must be in a file named “datai.dat.” Each
transistor has a set of 24 parameters, the first four of which are KP, A, n, and V. The next
20 are AV, as represented in tabular form as a function of the source to substrate voltage.
The first set of 24 is used to describe all of the NMOS enhancement mode transistors. The
second set of 24 is used to describe the NMOS depletion mode transistors and should have a
negative V. The third group of 24 is for the PMOS enhancement mode transistor and
should also have a negative Vq,. Finally, the last group of 24 is reserved for PMOS
depletion mode transistors, even though no primitives have been implemented yet that use
this type of transistor.

4.5 Output Processing

In addition to being able to generate plots on standard printer, PREMOS is also capable
of generating output suitable for input to a graphics plotter. Currently, the SEND command
will generate an output data file named “plfile.dat” which can then be used by a program
named “graf” for making graphs on Tektronics 4010 series terminals. All the user has to do
is execute graf, which will read in the file plfile.dat and then prompt the user for all

necessary additional input.

4.6 [ateractive Session Commands

At this point it is appropriate to demonstrate the use of PREMOS to analyze a particular
circuit. The circuit chosen for this is a ring oscillator constructed from CMOS gates as shown
in Figure 4.6. A file named “cring.dat” describing the circuit and giving the control
commands for this circuit is given in Figure 4.7. The transistor data file (always named
“datai.dat”) is given if Figure 4.8. At the time of this writing, PREMOS has been developed
in conjunction with the BSD 4.1 version of the UNIX™ operating system. Given that the

executable code for PREMOS is contained in the file named “prec.ext” and letting bold face

AT
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2.000a-CS
0.000a-00
0.0004+-00
0.000&-00
2.0002-08%
0.000a+00
C.000a-00
C.000a8-00
2.000¢=C5
0.000a-00
0.000¢&-00
0.000a+0C
2.0008-05
€.0004a-00
€.000e~00
0.000a-00
0.000a-00

PN AL A A Jabie SN i i

3 stage cacs ring oscallater
model inv cainv(2 2 20f 20¢)
model nand canan(e 1 20f 18f 20f)
model clx sourc(s O 10n 3n 10n 3n)
X1 1 45 2 nand

x2 2
x3 3

3 aav
4 Linv

c1 1030100130
opt 033131

dc

gonel 112

time
plot
sand
Ve §
end
-

40n in
121
121

Figure 4.7

1.0008=-03
0.000&-00
0.0004+00
8.0004+00
1.000¢-03
0.000a~00
0.0002+00
C.0004+00
1.0008-03
€.000a+00
0.800a+00
0.000a+00
1.00024-03
¢.000a~00
€.000a~00
0.000&=00
£.3002+00

Figure 4.8

Input circuit and control

file for CMOS oscillator.

1.0004-03
0.0004+00
0.0004+00
0.0004+00
1.0004-03
0.0004+00
0.0004+00
0.0004+00
1.0004-03
0.0008~00
0.0008+0¢
0.0004+00
1.000¢-03
¢.0004+00
0.0004+0¢C
0.0008+00
0.0008-00

2.000a8+00
0.0008-00
0.0002-00
€.000a+00
=2.000400
0.000a-00
0.C00a-0C
0.000e-QC
=1.00a-00
0.000a+00
0.000a-00
0.000e-00
2.000¢+-00
0.000&-00
©.000a-00
0.000c2+00
0.000a-00

0.000a-0C
0.000a-00
0.00048+00
0.000a-00
0.0004+00
0.000&-00
€.300&-0CC
<.000a-Q0
€.030a-00
€.000e=-20
0.300&+20
C.000&-0C
C.008a+-00
0.000&+00
€.0002~-0C
€.000¢~00
C.C00d~CC

Transistor process parameter
file for ring oscillator.

0.000a8-00
0.3004+00
€.000a+00
0.000d-0C
€.000a-20
0.000a-0C
<.300a-0C
<.30C2-CC
9.000¢&-0C
€.000a-00C
°.0004-00
0.000e-0C
-.300d4-00
£.000e-0C
0.000&-CC
0.000a+¢2
C.000a-0C
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denote what the user needs to type in response to various prompts, then a typical analysis of
a circuit would proceed as follows:

% prec.ext <return>
circuit file name? cring.dat <return>
listing file name? cring.out <return>

At this time, the output data is in the file "cring.out” and can be listed on a terminal or
printed on paper. PREMOS has also created a new file with the name “plfile.dat” for use
with the graphing routines. If "plfile.dat” already existed, it is overwritten with the new
output.

The plotting routines have been written using PLOT10 software for use with Tektronics
4010 series terminals. Assuming the user is now logged on to an appropriate graphics
terminal, the session could proceed as follows:

% graf
want hard copy? yes = 1, n0 = 0
1 <return>
1st symbol type="? 0(no),1(0),2(x),5(*),8(+),<11
1st line type="7 1-4(dash),0(solid),-1(n0),<11
sequential line type: 01 2 3 4 23 34, <11
00 <return>
2nd symbol type=? 2nd line type=?
01 <retum>

After the user has selected the desired style of line for each of up to seven output voltages
(previously selected with the SEND command in the input file), the waveforms will be
plotted. When the user is ready to continue with other commands, the “return” key must be
pressed to obtain another prompt from the computer. As can be seen above, a aumber of
possible plotting styles are given to the user in the prompt for the first waveform. For other
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possibilities, refer to the PLOT10 manuals. The graphics output resulting from the input file

“cring.dat” is shown in Figure 4.9. Other sample circuits are include in the appendix.
4.7 Discuesion

PREMOS is a fairly easy program to use provided the circuit can be described with the
primitives provided. Furthermore, after learning how to add one primitive, it is fairly easy
to add new primitives as the need arises. However, in the present implementation adding
new primitives increases the size of the program, while for speed it is desirable to keep the
program small. Since the primitives are used mainly in identifying the topology of a circuit,
it may be desirable to change the structure of the program so that the topology of the circuit
is stored in an intermediate data file. While allowing a much larger selection of primitives to
be maintained, this would also bave the benefit that different control commands inputs could
be used without the overhead of always analyzing the basic structure of the circuit. This
could be valuable if the predictor method was ever found to be unstable for a particular

circuit.
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CHAPTER §

Conclusions

Performing circuit level simulation at logic level speeds is an active area of research. The
methods used in the program PREMOS to increase the speed of analysis include analysis
sequencing, latency checking, and circuit partitioning. While these techniques do decrease
the amount of computer time required, some important restrictions must be placed on the
type of circuits allowed. As implemernted in PREMOS, one major requirement is that a
circuit must be composed of available unidirectional subcircuits. The unidirectional
requirement means that feedback within a circuit requires special numerical algorithms. This
work has attempted to show that the predictor Gauss-Seidel method is a viable approach.

While the predictor Gauss-Seidel method is not in general stable for all positive time step
sizes, it has been shown to be stable for some interval of step sizes in each of seven studies.
Perhaps just as important is the comparison between the predictor and the (commonly used)
standard Gauss-Seidel method. With the proper choice of a parameter, the predictor method
can be made stable over as wide a range of step size as the standard method. The major
drawback with this is that there is no way to determine the optimmum value of this parameter

at present.

PREMOS is a program that is accurate enough for many applications. However, for
titure experimental work it may be helpful to break the program into smaller, interacting
functional blocks. At the present time PREMOS contains over 4500 lines of code. While
this is not nearly as large a program as SPICE, continued growth could certainly slow the
speed of analysis. Breaking the program into smaller functional blrcks would have the
disadvantage that more information would have to be stored for the blocks to be able to
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communicate, but would allow the user to change one part of his input data without having to
necessarily execute the whole program sgain. Further experimental work would also be
simplified if parts of the program could be more easily modified without affecting unrelated __j

areas of analysis.
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cmos RS flip-flop
model nand cmnan(2 1 15f 10f SOf)
Todel clk sourc(S 0 10n 5n 10n Sn) .
ndl 1 3 8 4 nand ,
nd2 2 3 9 5 nand O
nd3 4 7 10 6 nand
2d4 S 6 11 7 nand ]
ss 1 0eclk 212001100001
rr 2 0clk 001111001201
sn 30¢clk 121113110101 -
opt 0 3 3 3 3 .
de o]
contl 1 1 1 RN
time 120n 1in
send 1 2 6§ 7 .
v 5 R
end .
* L}
!
\
Figure A.2  Input Data File for RO
Gated R-S Flip-Flop. - l
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Lh e o -

cmos master-slave RS flip-flop
model inv cminv(2 2 10f 20f)

model nand cmnan(2 1 15f 10f 50f)
Todel clk sourc(5 0 10n 5n 10n 5n)

x1 3 8 inv -

ndi 1 3 13 4 nand

nd2 2 3 14 5 nand

nd3 ¢4 7 15 6 nand

ndé¢ ‘S 6 16 7 nand

ndS 6 8 17 9 nand

ndé ‘7 8 18 10 nand

nd?7 9 12 19 11 nand

Qda 10 11 20 12 nand

ss 1 0clk CO1100000101

rr 2 0c¢clk 0000112000010
01010101010

ck 3 0 clk 1
:

cpt 0 3 3 3 3

de

contl 1 11

time 120n 1n
send 1 2 3 11 12
ve §

end

*

Figure A.S  Input Data File for Master-Slave
R-S Flip-Flop.
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cmos binary-to-octal decoder
model inv cminv(2 2 10f 20f)
model nand cmnan(2 1 15f 10f S50f)
model nor cmnor(l 2 15f 10f 20¢f)
model clk sourc(S 0 10n 5n 10n 5n) =
xl1 15 inv
x2 2 6 inv
x3 3 7 inv
*® .
nrl 5 6 22 8 nor
nr2 5 2 23 9 nor
nr3 6 1 24 10 nor :
nréd 2 1 25 11 nor o]
nrdS 3 § 26 12 nor - o
2:6 7 4 27 13 nor
ndl 12 11 28 14 nand
nd2 9 12 29 15 nand
nd3 12 10 30 16 nangd
négé 8 12 31 17 nand <
ndS 11 13 32 18 nand ..
ndé S 13 33 19 nand
nd7 10 13 34 20 nand
nd8 8 13 35 21 nanéd
 J
ckl 1 0¢clk 02L10212010101 -
ck2 2 0¢clk 002120021212 001112 ~
ck3 3 0clk 0 0O0O011000111 B
sk4 § 0clk 0000001212200 ‘
opt 0 3 3 3 3 B
dc
contl 1 1 1 =
time 60n Iin 3
send 14 15 16
ve 35 -
ené ;“
*
Figure A.8  Input Data File for

Binary-to-Octal Decoder. -
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